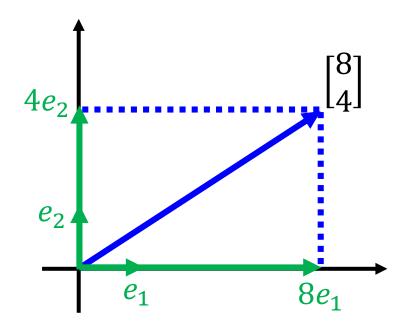
Coordinate System Hung-yi Lee

Outline

- Coordinate Systems
 - Each coordinate system is a "viewpoint" for vector representation.
 - The same vector is represented differently in different coordinate systems.
 - Different vectors can have the same representation in different coordinate systems.
- Changing Coordinates
- Reference: textbook Ch 4.4

Coordinate System

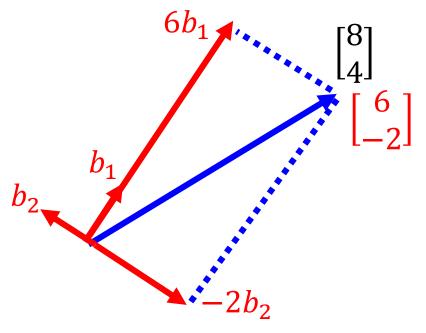
{e₁, e₂} is a coordinate system



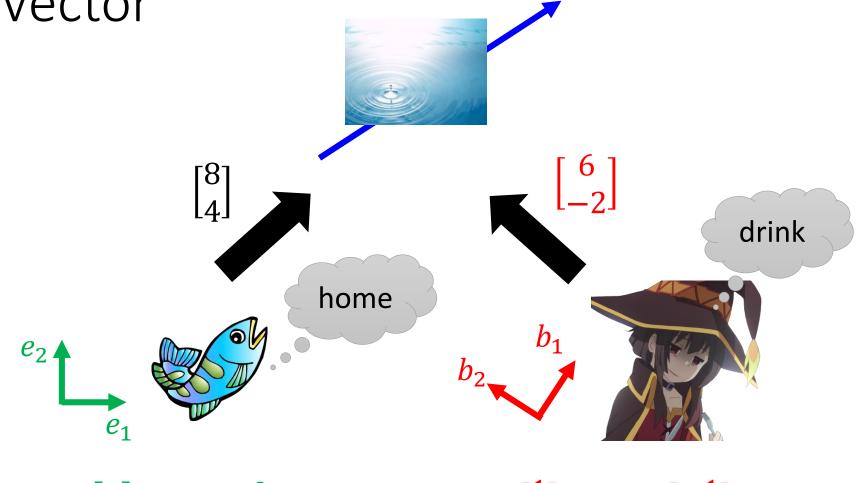
$$\begin{bmatrix} 8 \\ 4 \end{bmatrix} = 8e_1 + 4e_2$$

New Coordinate System

$$b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$



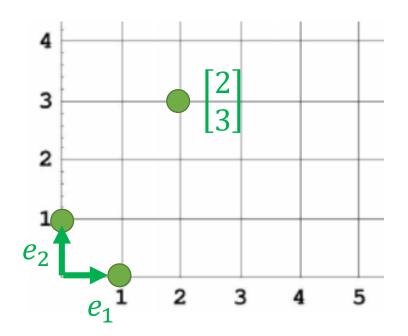
$$\begin{bmatrix} 8 \\ 4 \end{bmatrix} = 6b_1 + (-2)b_2$$



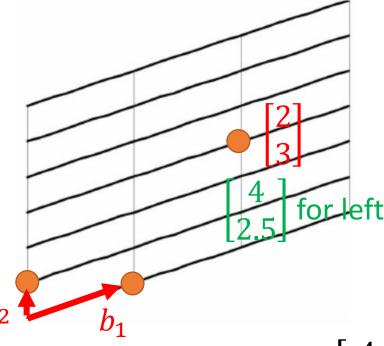
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

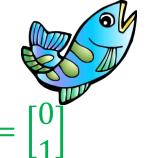
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



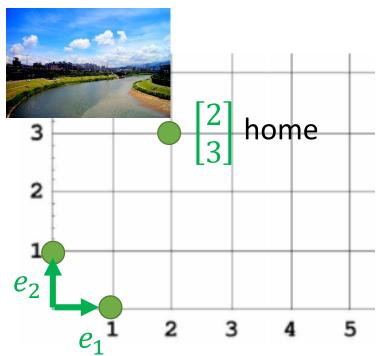
$$b_1 = \begin{bmatrix} 2 \\ 0.5 \end{bmatrix} \quad b_2 = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$$

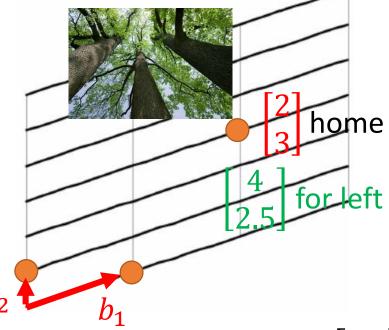


$$2b_1 + 3b_2 = \begin{bmatrix} 4 \\ 2.5 \end{bmatrix}$$



$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$





$$2b_1 + 3b_2 = \begin{bmatrix} 4 \\ 2.5 \end{bmatrix}$$

Coordinate System

- A vector set
 \$\mathcal{B}\$ can be considered as a coordinate system for Rⁿ if:
- 1. The vector set *3* spans the Rⁿ

Every vector should have representation

• 2. The vector set \mathcal{B} is independent

Unique representation

 ${\cal B}$ is a basis of ${\sf R}^{\sf n}$

Why Basis?

- Let vector set $\mathcal{B} = \{u_1, u_2, \dots, u_k\}$ be independent.
- Any vector v in Span \mathcal{B} can be uniquely represented as a linear combination of the vectors in \mathcal{B} .
- That is, there are unique scalars a_1,a_2,\cdots,a_k such that $v=a_1u_1+a_2u_2+\cdots+a_ku_k$
- Proof:

Unique?
$$v = a_1u_1 + a_2u_2 + \dots + a_ku_k$$

 $v = b_1u_1 + b_2u_2 + \dots + b_ku_k$
 $(a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_k - b_k)u_k = 0$
 \mathbf{B} is independent $a_1 - b_1 = a_2 - b_2 = \dots = a_k - b_k = 0$

Coordinate System

• Let vector set $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ be a basis for a subspace Rn

3 is a coordinate system

• For any v in Rⁿ, there are unique scalars c_1, c_2, \dots, c_n such that $v = c_1 u_1 + c_2 u_2 + \cdots + c_n u_n$

$$m{\mathcal{B}}$$
 -coordinate vector of v:
$$\begin{bmatrix} v \\ \mathcal{B} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \in \mathcal{R}^n$$
 (用 $m{\mathcal{B}}$ 的觀點來 $\begin{bmatrix} n \\ n \end{bmatrix}$ 有原來的 v)

Coordinate System

vector
$$\longrightarrow \mathcal{B} = \{u_1, u_2, \cdots, u_n\}$$

$$[v]_{\mathcal{B}}$$
vector $\longrightarrow \mathcal{E} = \{e_1, e_2, \cdots, e_n\}$
(standard vectors)

E is Cartesian coordinate system (直角坐標系)

$$v = [v]_{\mathcal{E}}$$

Other System → Cartesian

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\} \quad [v]_{\mathcal{B}} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$

$$v = 3 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + 6 \begin{bmatrix} 1\\-1\\1 \end{bmatrix} - 2 \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \begin{bmatrix} 7\\-7\\5 \end{bmatrix}$$

$$e = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\} \quad [u]_{\mathcal{C}} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$

$$u = 3 \begin{bmatrix} 1\\2\\2 \end{bmatrix} + 6 \begin{bmatrix} 4\\5\\6 \end{bmatrix} - 2 \begin{bmatrix} 7\\8\\2 \end{bmatrix} = \begin{bmatrix} 13\\20\\27 \end{bmatrix}$$

Other System → Cartesian

- Let vector set $\mathcal{B}=\{u_1,u_2,\cdots,u_n\}$ be a basis for a subspace \mathbb{R}^n
- Matrix B = $\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$

Given
$$[v]_{\mathcal{B}}$$
, how to find v? $[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

$$v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$

= $B[v]_{\mathcal{B}}$ (matrix-vector product)

Cartesian → Other System

$$v = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix} \qquad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\} \qquad \text{find } [\mathbf{v}]_{\mathcal{B}}$$

$$B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$
 B is invertible (?) independent

$$B[v]_{\mathfrak{B}} = v \qquad \Longrightarrow \qquad [v]_{\mathfrak{B}} = B^{-1}v \qquad = \begin{bmatrix} -6\\4\\3 \end{bmatrix}$$

Cartesian ↔ Other System

• Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$

$$[v]_{\mathcal{B}} = B^{-1}v$$

$$v = B[v]_{\mathcal{B}}$$

$$= c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

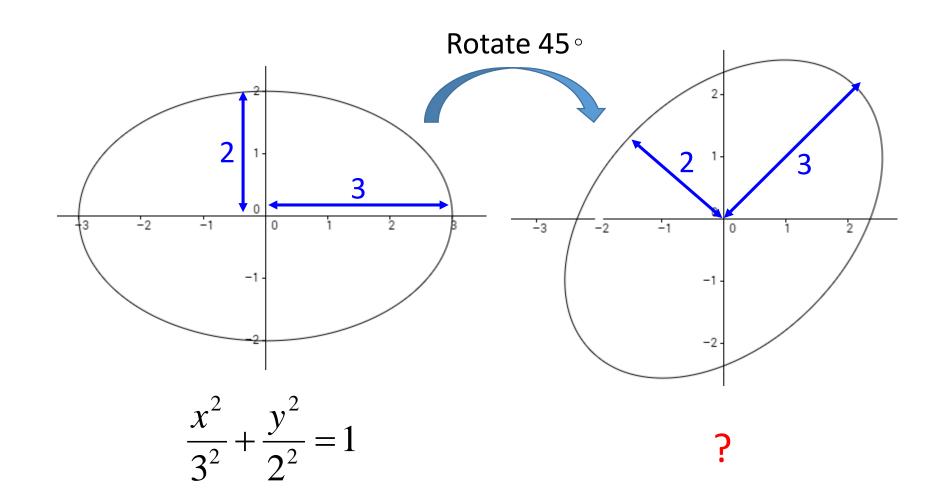
$$[v]_{\mathcal{B}}$$

$$= \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

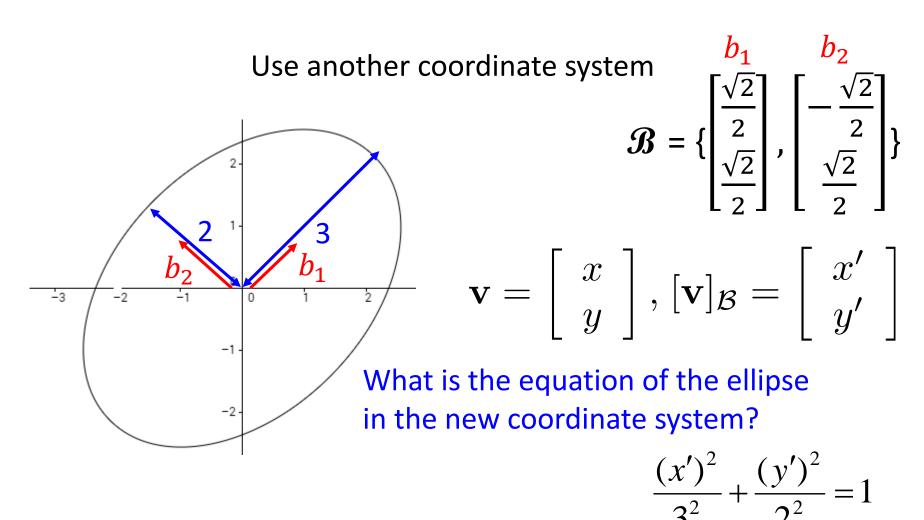
Let $\mathcal{B}=\{b_1,b_2,\cdots,b_n\}$ be a basis of \mathbb{R}^n . $[b_i]_{\mathcal{B}}=?e_i$ (Standard vector)

Changing Coordinates

Equation of ellipse



Equation of ellipse



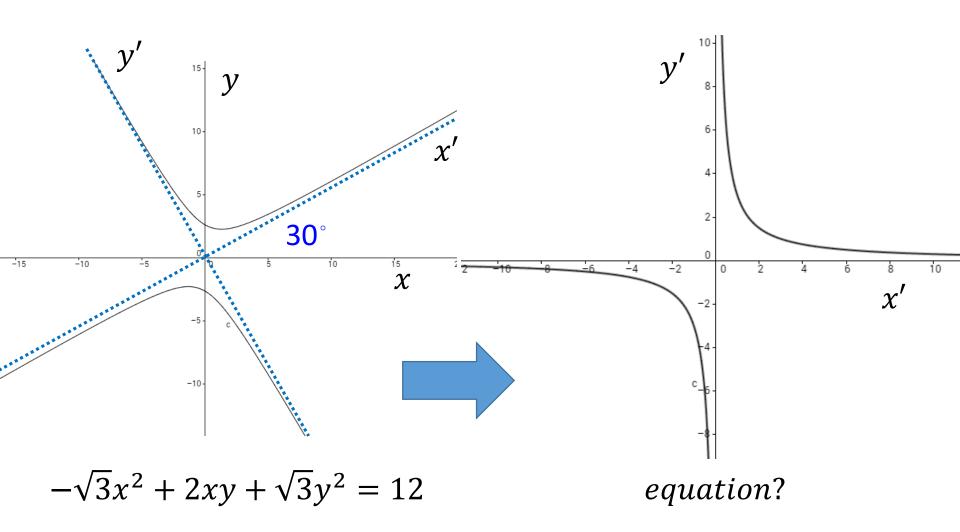
Equation of ellipse

$$\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}, \ [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} x' \\ y' \end{bmatrix} \qquad \mathbf{\mathcal{B}} = \left\{ \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \right\}$$
$$\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1 \Rightarrow \frac{\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2}{3^2} + \frac{\left(-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)^2}{2^2} = 1$$

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = B^{-1} \left[\begin{array}{c} x \\ y \end{array}\right]$$

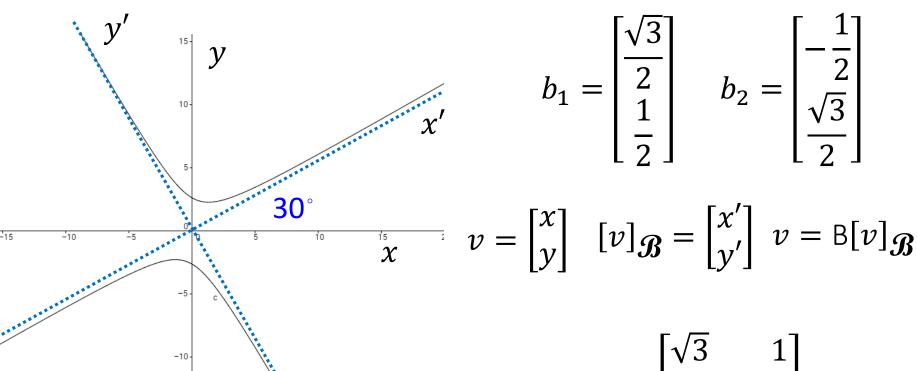
 $|\mathbf{v}|_{\mathcal{B}} = B^{-1}\mathbf{v}$

Equation of hyperbola



Equation of hyperbola

$$B = [b_1 \quad b_2]$$

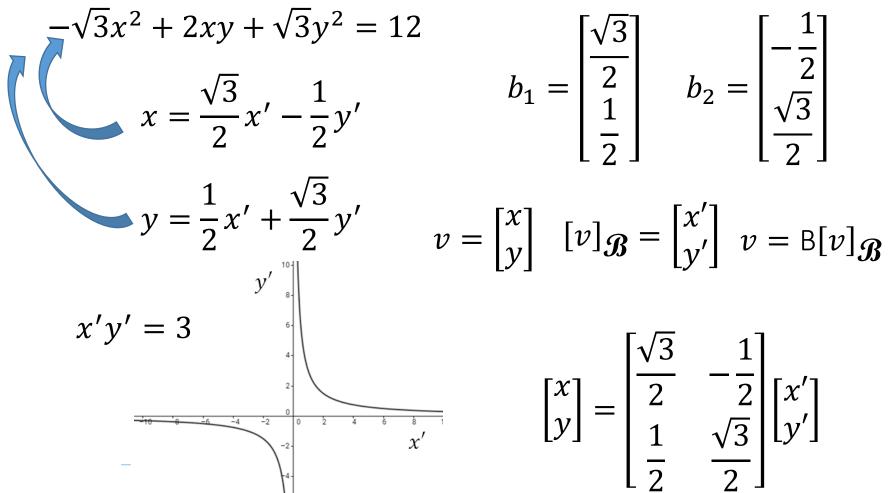


$$-\sqrt{3}x^2 + 2xy + \sqrt{3}y^2 = 12$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Equation of hyperbola

$$B = [b_1 \quad b_2]$$



$$b_1 = \begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \qquad b_2 = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Summary

vector
$$\longrightarrow \mathcal{B} = \{u_1, u_2, \cdots, u_n\}$$

$$[v]_{\mathcal{B}}$$
vector $\longrightarrow \mathcal{E} = \{e_1, e_2, \cdots, e_n\}$
(standard vectors)
$$[v]_{\mathcal{B}} = B^{-1}v$$

$$v = B[v]_{\mathcal{B}}$$